CHAPTER -1 INTRODUCTION

System: A system is an arrangement or combination of different physical components such
that it gives the proper output to given input. A kite is an example of a physical
system, because it is made up of paper and sticks. A classroom is an example of a

4

physical system.

Control: The meaning of control is to regulate, direct or command a system so ti:at a desired
objective is obtained.

Plant: It is defined as the portion of a system which is to be controlled or regulated. It is also
called a process | | -
Controller: It is the element of the system itself, or may be external to the system. It controls
the plant or the process. . '
Input: The applied signal or excitation signal that is applied to a control system to get a
specified output is called input. . -

Output: The actual response that is obtained from a control system due to the.application of
the input is termed as output.

Disturbances: The signal that has some adverse effect on the value of the output of a sysiem
is called disturbance. If a disturbance is produced within the system, it is
termed as an intemal disturbance: nmm;.u"isc, it is known as an external
disturbance. .

Control Systems: It is an arrangement of different physical components such that it give the
desire output for the given input by means of regulate or control either

direct or indirect method.

A control system must have (1) input, (2) output, (3) ways to achicve input and outpu

e r—

objectives and (4) control action.
Fig. The following shows the cause-and-effect relationship between the input and the output.

Reference input _ | Control Cﬂ‘nlr_tillﬁd output

K1) e % ()
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Any system.qa.nbe characterized mathematically by . (1) Transfer function (2) State model

; Laplace transform of output

Transfer Function = -
Laplace transform of input | initial conditions =0

LIO] . €@

L[n)] R(s) initial conditions =0
Transfer function is also called impulse response of the system.

Cls) = TF.x R(s) ' o .

Classification of Control System :

; ¥ - ¥ :
_ Open-loopC.S Closed-loop (or) feedback C.S
1) Positive feedback C.S
. 2) Negative feedback C.S
Open-loop Control System :

The Open-loop control system can be described by a bfock diagram as shown in the

figure,
Ref :
(Gt —[roces |—> Oy
The reference input controls the output through a control action process. In the block

diagram shown, it is observed the output has no effect on the control action. Such 2 system is
termed as open-Toop control system.

In an open-loop :untrol system, the output is neither measured nor fed-back for
comparison with the input. Faithfulness of an open-loap control system depends on the -
accuracy of input calibration.

Examples for open ~ loop control systems arc traffic lights, fans, any system which is
not having the sensor.

Advantages and disadvantages of open — loop system:

Advantages

These systems are simple in construction and design.

These systems are economic.

These systems are easy from maintenance point of view.

Usually these systems are not much troubled with problems ofmbﬂny
These systems are convenient to use when output is difficult to measure.

Disadvantages .
. ‘I'hese-sysm are not .uccmat&anﬂ reliable because their accuracy is dependent on
the accuracy of calibration.
e In these systems, inaccurate results are obtained with parameter variations, ie.,
internal disturbances.
« Recalibration of the controller is required from time to time for mammmmg quality
and accuracy

Closed-loop Contro) System :

In a closed-loop control system, the output has an effect on cantrol action through a
feedback as shown and hence closed-loop control systems are also termed as feedback
control systems. The control action is actuated by an error signal ‘e(t)" which is the difference
between the input signal ‘r(t)" and the output signal *¢(t)". This process of comparison
between the output and input maintains the output at a desired level through control action

. process,

Reference

CQutput
Input — (t) _>. Ca)

The éontrol systems without invatving human intervention for normal opefation are
all_ed automaticcontrol systems. A closed-loop(feedback) control system using a power
amplifying device prior to controller and the output of such a system being mechanical i.e.,
position, velocity, acceleration is called servomechanism.

Advantages and disadvantages of closed — loop ryliem
Advantages i
¢ In these systems accuracy is very high due to correction of any arising error.
o Since (hese systems sense environmental changes as well as intemal disturbances, the
errors are modified.
o Thereis reduced effect of non ~ lincarity in these systems.
s These systems have high bandwidth, i.c., high operating ﬁequcncy zone.
o There are facilities of automation in these systems. —-

Disadvantages

* These systems are complicated indesign and, w, costlier.
* These systems maybemut?hlc.

Scanned with CamScanner

|



Comparison of Open-loop and Closed-loop Control systems :

Open —loop CS. Closed — loop C.S. i
1. The accuracy of an open-loop system 1. As the error between the reference input
depends on the calibration of the input. and the output is continuously measured
. .Any departure from pre — determined through feedback, the closed — loop
-1~ calibration affects the output. system works more accurately. :
2. The open — loop system is simple to 2. The closed — loop system is complicated
construct a.nd c]mp to construct and costly
"| 3. The open —loop systems are generally | 3. The closed - loop systems can become
. stable. unstable under certain conditions
4, The operation of open ~ loop system is | 4. In terms of the performance, the closed —
affected due to presence of non loop systems adjusts to tl:.c Fffeﬂs of
linearity's in its elements. non — lincarity’s present in its elements.
Open-loop C.S.

RE) = @ . -
RG) : G(s) or C(s) = GBIRE)

C(s)

If exror signal e(t) is zero, output is controlled.
If error signal is not zero, output is not controlled.

For Positive feedback, error signal = x{t) + y(t) ¥

For Negative feedback, error signal = x(0)-y(t)
The of feedback is to reduce the error between the reference inprram
Dulpsturpose +Ve feedback. -Ve feedback

AN AN ]
Unity /B{H(s)=1) Nonunity F/BMH(s)#1) Unity /B Nonunity F/B

G(s) G . £ . _G6) . Cb) __ G
%(E))' 1-G(s) * _ﬁ({?)‘ 1_—c,_(i)_H_(sj' R(s) |+G(=) R(s) 1+G(s)H(S)

Where G(s) = T.F without feedback (or) T.F of the forward path
H(s) = T.F of the feedback path
. a¢ feedback has effects on such system performance characteristics as s!abluty. bandwidth,
overall gain, impedance and sensitivity.

1.1 Effect of feedback on Stability :

Stability is a notion that describes whether the system will be able to foliow the input
command. A system is said to be unstable, if its output is out of control or increases without
bound. It can be demonstrated that one of the advantages of incorporating feedback is that it
can.stabilize an unstable system.

Effect of feedback on Overall gain : .

Feedback affects the gain G of a non-feedback system by a factor of 1 + GH. The
general effect of feedback is that it may increase or decrease the gain. Ina practical control
system, G and H are functions of frequency,-so-the magnitude of | + GH may be greater than
1 in one frequency range but less than 1 in another. Therefore, feedback could increase the
gain of the system in one frequency range but decrease it in another.

.12 Effect of feedback on Sensitivity:
Consider G as a parameter that may vary. 'I'h:smsumrynfl!n gam uflheovm.ll
_ system M to the variation in G is defincd as

oM/M ‘

SM = .
2G/G-

where @M denotes the incremental change in M due to the incremental change in G;
@M/Mand 3G / G denole the percentage change in M and G, respectively.

oM G 1

Sm — — = =
G M i+GH-

This relation shows that the sensitivity ﬁ:muun can be made arbitrasily small by
increasing GH, provided that the system remains stable, In sn open-loop system, the gain of
the system will respond in a one-to-one fashion to the variation in G. In general, the
_sensitivity of the system gain of a- l‘cedback system to- pmmeter variations deperds on where -
"theparameter is located..

The e[l'ms al'fm‘]hnllt are as follows,

(i)Gain is reduced by a factor :

(if) There is reduction ofpamnc(cr varidtion by a factor 1 + G(s)H(s)

(iii) There is improvement in sensitivity.

(iv) There may be reduction of 5t@bility. -
The disadvantages of reduction of gain and reduction of stability can be overcome by gain
amplification and good design, respectively.

For a complicated system, it is easy to find the transfer function of each and every element,
and output of a certain block may act as an input to other block or blocks. Therefore, the
Inowledge of transfer function-of each block is not syficient in this case. The interrelation
between the elements is required to find the overall transfer function of the system. There are
two method : (1) Block diagram and (2) signal flow graph.
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CHAPTER- 2 BLOCK DIAGRAM S AND SIGNAL FLLOW GRAPHS
%

* There are two methods: (1) by using Block diagram or (2) Signal flow graph, to find the
overall transfer function of a big complicated control system.

2.1 BLOCK DIAGRAM ALGEBRA

Block diagram reduction techniques:
" Some of the important rules for block diagram reduction techniques are givm below

1. The block dumsbowbdowmluﬁlhcwmmdmpmuperlh:hansl‘erﬁmmn
relation given below :

o8 -R{;} @ C9 = RE).G)
where Gqs) is known as the trnnsfer function of the system,

LOMR cis)

Application of one input source to twoormaresystunsumcmcdby a Iakr.-ofl'pmm as
" shown at point A in the below figure. -

2. Take off point :

Rs) A Ci(s)

- Cifs)
3. Blocks In cascade :

Wuuvudbbchmmmdmmdqmeovﬁﬂmmlm&t

function is determined below.
C

R(s) 1(s) Ca(s) C(s)

Cils) -

=Gl(s)
R(s) ) . —

G G

Ci(s)
C(s)
Ci(s)

=Gi(s)

Mulliplying above three equations, the equivalent transfer function is
C(s)
— = Gys) G2(s) G3(s)
S

The equivalent diagram is given by

R(s) C(s)
—>[Gu(s) Ga(s) Ga(s) . e

4. Summing pomt
Summing point repnesmu summation of two or more signal entering in a system. The
output of 2 summing point being the sum of the entering inputs,
Xs) —

+
R(s) ; s) = R(s) +X(s) - Y(5)

Y(s)

5. lnten:hlngmgmmmmg points: Consecutive summing po:n!s can be interchanged, as this
interchange does fiot alter the output signal.

R(s};@ R[s)w- X(s) ; % R(s) + X(s) —Yg)

R(s) R(s)- Y(s) + R(s) - Y(s) + X{s)
Y(5) X0)

6. Blocks in parallel: ’
When ongor blocks are connected in parallel the overll equivalent
. transfer ﬁmct:op is dmnd below., i

—>{6i)

R(s)— L >| Gafs) ' CGs)

o)
CE) = R(5)Gi() + Ris) Gafs) + RES) Gus)
or O = RE{Gi(s) + Gals) + Gu(e)
Therefore, the overall cqui\-raknt wransfer l'tmtio_n is,
s)

— = [Gy{s)+ Gi{s) + GH(9) ]
R(s)
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The equivalence of above diagram is
R(s) : Cls) .
———>{ Gy(s) + Gofs) + Gals)

7. Shifting of a take off point from a position before a block to & position afterthe block is
shown below. A

RO S
I P
RE) A~ aB

>[Ge)] |—) —> cs)
_1 R(5)
RISHTC -

8. Shﬂmgofalak:oﬂ'pom:ﬁ‘umapomﬁonnﬂuablod:toaposmunb:fonﬂtblmku
shown below. -

)

9. Shifting of a summing point from a position before a block to a position after the block is

shown below.

RE) Ay C(s) = [RE5) £ X(5)] G(s)

)

*(s)

.........

R(s) AT TaB Qn)=[Ris)2 X(5) 1 Gls)
—

X(s) L

10. Shifting of 2 summing point from B position after a block to a position A before the
- block is shown below. —_—

R A% B C)=[ROGEDEXE)]

>[GE—3
—re)ae)
X(s)
R(s) A"I ' '_'c{s)B Cls)= [ R{s) + X(5) (1/ G(s)) 1 G(s)
h& =22
= [R(s) G(s) £ X(s)]
s) [1/G(s)]
G(s)
X(s)

11." Shifting of a take oﬂ'poml from A position before a summing point to a position B aﬁcr

the sumnung point is shown below.

y

R 0 ey B Cls)=[REOEX()]
T %
. X(s) i

- 3 R(s)
Re) AT, 4B 0= [RE XS]
' 3
*(s) ————)(%_——) R(s)
+

X(s)
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12, Sh&ngaiakeul’fpoml fmm a position after a summing point to a position before the

R) A” .o B i) = [REEX())
b3 i

X(s) | Cs) =E[ R(s)x X(s) ]

R A, VB co=[ROXE]

g
Xis) Cao SO [RE)EX()]
| X()
2.2 SIGNAL FLOW GRAPHS

A signal flow graph may be defined as a graphical means of portraying the input-
output relationships between the variables of a set of linear algebraic equations.
Considn-llmali:mrsym is described by the set of N algebraic equations
N

t?’atht ji=1,2,..,N

Baﬂcpmpwﬂcscf;ign:lﬂuwgrlphs . —_—

1. Amﬂﬂwg‘apbs_applwsmlmhmsmmx - —

2.Theemnnunsbasedunwh:has:gmlﬁawguphlsdmmmmbcalgehmcquauonsm
the form of effects as functions of causes. —

3. Nodes are used o represent variable. Normally, the nodes are arranged from left to right,
following a success of causes and effects through the system.

4 Signals travel along branches only in the direction described by the artows of the branches.

5. mhmrhdumgﬁommdey.my,mmlhed@mdemonhevambley“upon
¥; but not the reverse.

6. Asignal Y, traveling along a branch between nodes y, and y; is multiplied by the gain of

e branch, a,, 50 that a signal ay yq s delivered at node y,.

_ Definitions for Signal Flow Gmillu:

Input Node (Source): An input node is a node that has only outgoing branches.
Output Node (Sink): mmmkammmmﬁmmm
Path: Apathnmycollmnofamnmmmofmbuﬁavumdm1hesm=
direction. ——-s
Forward Path: Afamudﬁaihuapaﬁ-thﬂmmaummmdemdmd;n’mwm
node and along which no node is traversed more than once.

Loop: Moopuapmhihlongmalesmdmnmmlhcmnndeanddmgwmwm
other node is éntountered more than once.

Path gain: Thcpmdwof!hchmnchgamsmmundmmmngawh:suﬂedﬂu
path gain.

l?urward)plth gain: Forward path gain Bdeiﬁned as the path gain of a forward path.
Loop gainy” Loop gain is defined as the path gain of a loop.
Masons Gain formula:
The general gain formula is
' N M

Y,
M = —
Y ‘::-: A

-

m .
M=gainlictmy,-.mdy,.
Yo = OUtput node variahle
¥in = input node variable -
N = total number of forward paths
* My = gain of the k® forward path

A=1-ZPm+XPu—ZPw+...... B

= | —( sum of all individual loop gains) + (sum of gain products of all
— possible combinations of too non-touching loops) — (sum of the gain  “— -
products of all possible combinations of three non-touching loops) +......
Pox = gain product of the m™ possible combination of ' non-totiching loops

Ay =the A for the part of the signal flow graph which is non-touching with the
K® forward path
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Objective Questions

01, The block diagram contains
(a) system output variable
(b) system input variable
(c) the functional relations of the
varisbles  °
(d) all the above

02. In a block diagram, when a take off
point is moved ahead of a block, G).

i}

(a) The block G, will be added in - - .
parallel.

(b) The black G, will be added in the
forward path.

(c) The block G, will be added in

series.
(d) The block Gy will be added in the
feedback path.

03. What is the gain of the system
(output/input) given below?

[:'—-——_V. .

inp| !l H . or
.. '.8 ;% _

()36 . - -

(c) 90 @) 10— - =

04. The closed-loop gain of the system
sketched below is

Qe
4

(@) -4 ) -4
@© 4 ' ) 43

05. In the block diagram shown, the output
-8 (s) isequal to-
LU:(S'J

Uis—=> BEG—>R—>GE>0 )
@) U )+ Uz ()
®) Ui (5)G (5)
() Gi ()G () Ui () - Gal) U (8)

06. The wamsTer functiomEq (s Ey (s) of the
RC-network shown is givenby -

IR -TO R 7 Eo(s).

i ' —L
@ RCS+1 ® RCS
(c}_BCS_ . (d)Nonc
RCS +‘|.

07. The block diagram of a certain sysiem is
shown below

(s)

4+

u

. The transfer finciion Y(sYU(s) is
“ givenby - - - -

Gyfs) Gyls)
1 - Gy(s) Gols)

® Gi(s) Gats)
- © 1+ Gy(s) G(s)

(a)

-—= OTGEG —

@ Gi(s) Gxs)
1+ Gi(s) Gxls)

e,

08. The figure below gives two equivalent

block'diagrams
X
. G X
A —l)—lc —
EX X

The value of transfer function of block
marked ‘X" is given by
(@) G(s) ®1/G(s)
© ! d) 1 +G(s) . -

09. The figure shows two equivalent block
diagrams
Xi :l—’
g o
0]

L X
The transfer function of the block
marked *X” is given by ;
(2) G(s) ®) 1/G(s)
© 1 (d) 1+G(s)
_10. For the system shown, the transfer- —
function C(s)/R(s) iscqual to - .
o

£ A0 _
@ &

s+s+10 +s+10

O O

Key for Objective Questions :
l.d2.d 3.b 4.a 5.¢
6.a7.d &b 9b 10.b

OBJECTIVE QUESTIONS

11. In a signal flow graph, the nodes
represent

I {a) the systern variables -
{b) the system gain
{c) the system parameters -
(d) all the above

12, 'The branch of a signal flow graph -
represents .
(a) the system variable
(b) the functional relations of the
variables
(c) the system paramelers
(d) none of the above

13. By applying Mason's gain formula, it is
possible to get
(a) the ratio of the output variable to -
input variable only '
(b) the system functional relations
" between any two variables
(c) the overall gain of the system
(d) the ratio of any variable to input
variable only

14. Two or more loops ina ligmi flow graph
are said to be non-touching '

(@) il‘dac:y'do not have any common
branch :

(b) if they do not have any common [oop
(c) ifthey have common node
(d) if they do not have any common

. node

15. The transfer function of the system
shown in the givu& fig.

‘Oullpul

I
ACE . ACE
®race - O 1oace
L2ACE - 2ACE
OTAE - DT
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CHAPTER -3 . L TIME DOMAIN ANALYSIS

The time response has utmost importance for the design and analysis of control
systems because these are inherently time domain systems where time is the independent
vaniable. During the analysis of response, the variation of output with respect to time can be
studied and it is known as time response. To obtain satisfactory performance of the system,
the output behavior of the system with respect to time must be within the specified limits.
From time response analysis and corresponding results, the stability of system, accuracy of
system and complete evaluation can be studied very easily.

Due to the application of an excitation to a system, the response of the system is
knomasnmerespmseaudulsafmmunnufmnc.ﬂﬂuretwopamofrwponseufmy
system: (‘]lran.ncntruponsemd (ii) steady- state response. -t e

Transient Response:

The part of the time response which goes to zero after large interval of time is known as
transicnt response. In this case Lt C(t); = 0. From transient rsppnsc. we get the following
information: =

(a) The time interval afler which the system responds mkmg the instant of n;phmhun of
excitation as reference. .

(b) The total time that it takes to achieve the output for the first time,

(c) whether or not the output shoots beyond the desired value and how much.

(d) whether or not the output oscillates about its final value.

(¢) The time that it takes to settle to the final valve.

Steady State Response

The part of response that remains even after the transients have died out is said to be steady-
state response. From steady — state response, we get the following information:

(a) The time that output takes to reach the steady — state '

(b) Whether or not any error exists behwﬂwdesuedmﬂlhcacnnl valpe. -

(c) Whether this error is constant, zero, or infinite.
The total response of a system is the sum ofum.'.lmtrespmscandsludy — state response:

C) =Cu() + Cy
Figure shows the transient and steady — state responses along with steady — state exvor.
) 4

098 -z ===--z== _f_

b-n——-Tmuienl ——ple—— Steady —
Response State :

i
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3,1Transiant analysis
Standard fest signals:

(1) Step function : Step function is described as sudden applwmun of input signal
as illustrated in figure.

r(t} L y
A .
> . (1) = A u(t)
A o ufy=1:t20
2 o=05t<0
0 —t—--- Inlheuphumfunnfmﬂ(sh A!s
Step function /displacement function. ™ —

(2) Ramp function : ‘The Ramp is a signal which starts navalue of zero and
increases linearly with time. Mathematically, .

f(l)
r)=At;fort20
=0 ;fort<0 Slope ‘A’
In the Laplace transform from, R(s)= A /s’
~ Ramp function is also called velocity function. . t

(3) Parabolic function : Parabolic function is described as more gmdual application uf
input in comparison with ramp function as illustrated in figure.
r(t)

) = ACR2 ; fortz0

f)=0 for 1<0
IfA=1,thenr(t) = 212 and the parabolic function is called
unit parabohc function and the commesponding Laplace
transform is ; 5

R(s) =A/s' ; Parabolic function is also called acceleration function

@ lmpnkelhneﬁﬁn:Amil—impllsﬁsdd'medasnsign‘alw!ﬁchhasmbwlue
everywhere except at t =0, where its magnitude is infinite. It is gencrally called the § -
function and has the following property : 5 (1) =0; t=0

: . d _
Unit irnpulsh'\ﬁmclinn =—— ( unit step function )
dt

Hence the Laplace trnnsl'mm of unit impulse function is derived
" from the Laplace transform of unit step function as follows %
f(mnlmpukeﬁMm]-s Is=1

‘ime response of a order Conlrol
*A, first order control system is one wherein highest power of s’ in the denominator of its

“transfer function equals 1. Thus a first order control system is expressed By a transfer
function givenbelow :

) _ 1
R(s) = sT+1

The block diagram representation of the above expression is shown in the below figure.

-

Block dij first tro ’

Time response of a first order control system subjected to unit step input function :
The output for the system is expressed as
1

C(s) = R(s)

"—> (M
sT+1

" Asthe input is a unit step function r(f) =1 and R(s) = 1/s
1

- 1
" Therefore, substituting in Eq. (1) C(s) = — -
' H sT+1
. _ T T
Breaking R.H.S into partial fractions Cg) = — -
. s sT+1

1 1
or C(s) = —_—
5 s+|IT

1 1

£'cE) = £ — - ] SUoem=1-etT
- Ls - s+UUT )

The erroris given by~ " e (1) = r()—e (1) = 1-{1-¢""T) = VT

Thcsimdymtcmur = Lim ¢V =0\,

==

Tahug Laplace transform on both sides

The graphical representation of the time response shown in figure indicates that the
response is exponential type and the steady state value is 1 unit. As the time increases the
disparity between the output and input approaches to nil, bence, the steady state error is zero.
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Time response of a first order control system subjected to unit ramp input function :

1
The output for the system is expressed as C(s) = R(s) Tl.
’ +
Asﬂ:empmmpmmra.mpﬁmﬂuu r(l)Bt:ndR(!)-lIl s

Therefore C(s) = = — Breaking RH.S. mlnpamnlfndxms :
st sT+1°
1-sT T 1 B TS B
C(s) = + — 3 C{s)—‘_-T—+T
’ s? sT+!1 — s 5 s+U/T

Taking inverse Laplace transform on both ,mks,

: S N | o e
£'c(sy = £ [——-T —+T ]; e = (1-T+Te™"'T)
s? s s+1/T :

The emorisgivenby () = r()-c(® = t=(t-T+Te™'T) =(T-TeVT)
The steady state erroris ¢ = Lim (T-Te ' T) =T
. [

The time response in relation 1o the above equation is shovm in the figure.

et The time response shown in figure indicates that during
steady state , the output velocity matches with the input velocity
LAGD =T, I:ulhybdtindihempmhyuszmdapomuomlmrofT

mmmhmmhmdsoowmhwer the time
cmmlmxshmnomlmrmdakohurnmclag.

o ]

me se of a first order contr em sub :dlu Impul tion

The oulpm for the system isexpressedas  C(s)=R(s)
sT+1
As the input to the system is 4 unit lmpulse funcum, its Laplace transform is 1, Le.
R(s) = 1, therefore,
i

— CE)=1.—
- sT+1 -
L]

Taking inverse Laplace transform on both sides of Eq.(2) ;
1

1 :
£lcE) = £ oo E'Cs)=£(/T).
sT+1 N ) s+1/T

Ce) = (1/T)eMT

]]mg Response of Second Order_contyol System :

i Axomﬂordaconmlsysmuoncwhmmthchgimpowuf s’ mthcdemmmz!’ur

of its transfer function equals 2.
Agﬂ:mlaplmmfmﬂnTanamndordawmolsys:mummby
€ -
R(s) +2§m.s+m. 4

The block diagram representation of the transfer function gwcn above is shown in the figure.
P4

41_()._,_% ol ] co

5 (s +28w,)
Block diagram of a second arder control system

Characteristic Equ; g- tion :
- The general expression for the T.F. ofnswundm-da‘mntmlsyslmlsglmby
CO- ot
‘Ris) s+ 2Uonston
" “The characteristic equauun of a second order control system is given by
S+ W s+ 0,0 = 0
Tee"l8cation of roots of the chara. equation for various ulm of . (keeping @, fixed)

and the correspondmg time response for a sccond order control system is shown in below
ﬂgurc.

Fig: Lbcaﬁunbfmmsuflhech&mderisﬁcqmﬁonand corresponding time response. '
lebuveﬁgum.lusu{meddmdwchangeowﬁommdudzmpedmwudamped
Response takes place at £, = 1. The value of & from the Jocation of roots is calculated as

L = cosf
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Time nse of a second order control system subjected to unit step inpy uncli’orl-'
The output for the system is given by )
- ; 0,

C(s)=R(s). ; ;
et . 8 +2L 0,5+ 0

Aslhemptmsammmpﬁmmn r(t)=1eand R(s)=1/s

Therefore, substituting -in above Equation
e 2

1 On
C(s)= —.
' s S+20e.s+0,]
The solution for the above equation : -
E e (~Emnt) =) |
e == —ﬁn[(ﬂa‘“—ﬂ )“’Eﬂﬂ-'—}Ji
s i=T e Wi

mm:uponuexprmmugrmbyﬂnnbochmonfwvﬂmof§<lls,
exponentially decaying oscillations having a frequency @, Y(1=¢%) and the time constant
of exponential decayis (1/8ep).

‘Where m,. xscalled natural frequency ofoscnllnnons.

‘g = g V(1 C7) is called damped frequency of oscillations.

‘G *-affects the damping and called damping ratio.

',y is called damping factor or actual damping or damping coefficient .

—T=(1/¢o,)
c() 7 obrwi
0 >1 fig.(b)
fig.(2) )
Fig. Time response and error of a second order control system ( { < 1, under damped casc)
subjected to unit step input function. __

The time response ofasmdoldueomlsym is influenced by its damping mir;
(&) The cases for the values of damping ratio as (a)G<1 (b)E=0 ()0<5<1 (d]§=|
(d)§>lmmmldaedbcluw.

UNIT STEP RESPONSE ((0 <¢ <I), UNDERbAMPBD)

As stated above, if§ < 1 the time response presents illation and i

e s presents-damped oscillation and such a response is

mresponsemuumthmz%oﬂbcdmvdw]uc(lumt)aﬁcrdnmpmgoutlbc
oscillations in a time 47, where T =(1/&0, ).~

Unit step response when (=0, undamped system) : *
“exp (Dont) -0
ct) =1- 41-— It-i-lum"[ ]
Vi-o? 0
or  cft) = l-sin(w,t+tan"'0) or ) =1-sin[w,t+n/2]
or e =(1-cosayt)

The time response 1o nbovccqmmnuplunedmﬂ:cbelowf which indicates
: mmpcd pedtss igitre indical su:tumed

Unit step response when 0<{ <1 ¢ (Under Damped symms only)
ransient nse l'm of second order control :
The.time response of an underdamped control system exhlbm dnmpod oscillations

prior to reaching steady state. The specifications Ppertaining to time res duri
part are shown in the following figure. .. ponse during tmnsient

(1) Delay Time: 1,
The time required for the response to rise from zero to 50% of the final value.
F====r====n . -
V= 12078 | -
RN S
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@ Th':riseﬁme ity

Theﬁseﬁmcislhcﬁmeneadedfnrﬂ:empwumm}ﬁnm ]01090%01 Oto IDO‘

w4 of the desired value of the output at the very first instant. Usually 0— 100 % basis is used
for underdamped mums_m_ﬁhlotnw%qumdamlned system.

----------------------- [mff]
i vhere g =t |
3 e g

() peak time: fp
lmlhcnmereqmmdfmmmnmdfq-ﬂ:emsemmmmpaksnﬂbeume

response t,,—-::!m,

(4) Maximum overshoot : Mp
It gwulhennrmuhzed daﬁumbawmhmemspomcpeakms!cady staléO.’P

¢ (t) mm—C() o .
Percentoge Mp= ————— x 100 = =L jo0%
cw - '

F %M, = exp(-Cx/NT—C) X100 }

A graph relating M, and § is plotted in below figure. ..

e%
% M,
4 oo
Graph between M, and §
(5) The Settling time :#; :
For 2 % tolerance band , the settling On 5 % basis the settling time for a second
order time is given by control system is given by
' 1 1

ty= 4 — 1523 ——

Con ' G

" An expression for the time response of a second order control system having

" =1 (critically damped) when subjected tb a unit step input function is:
c{) = [1-exp(-Cont) (1+wut)]

Thcume:ﬁpmlnmhnnnl'iq (11) is plotted in the below fj; Thi
il igure. The response is called

Iﬁmspome ofa mond orderC.S.(C =] mnuﬂy.dlmpod)subjecwd to 2 tmit step
on.

An:xprusiuufarlh:ﬁmempomcufamd order control system having
£> 1 (Overdamped) when subjected to unit step input function is derived hereunder :
The output for the system is given by

C(s) =R(s)
52+ 2y s+ my?
Astbcmpmnumltstepfmam =1 and R (s)=1/s, therefore,
2

suha'ntuungmlheabweequmm C(s)=(1/s).

. s’+2§m.s+m,,:

. o, - -

It can alsobe written as C (s) = (1/5).

(4 Le) e, (G0 +1)
g

o C()=(I/s5), — R

T D st VT oy . - -

. Expanding R.H.S of above equation into partial fractions,
1 ’ 1 , —_—
Cl=— -
s WNE VT D) s+ C -V 1) wa]
1

+ B -

2vg -1 CHVET-D s+ +V5TT Y u ]

Taking inverse Laplace transform on both sides

oy G-V Nont]  expl-€FVE T ayt]
- +
V-T2 gV
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c(r)

0 aT

Time res. of a second order C.S. (g >1 ovcrhdnmpcd] subjected to a unit step input function.

c=0
Cumpmsnn nfuml step input lime response ol'aswond order
control sysl:m for different values of “C’.

OBJECTIVE QUESTIONS

. Ol. The radial distance between a pole and
—- the origin gives
a) damped frequency of oscillation.
- b) undmpnd frequency ofuscillalmn
¢€) time constant
d) natural frequency of oscillation.

02. For a type 1, secand order control
1 ", system, when there is an increase of 25
= . Yimits natural-frequency, the steady-
state error to unit ramp input is
a) increased by 20 % of its value,

b) equahozg!m,.,whmg=
damping factor.

c) decreased by 21 % .

d) decreased effectively by 20 %

03.Inatypel, second order system, first

peak avershoot occurs at a time equal
to .

O T O
n d bl
1+¢ ()QI- 7

MTypenmbu-ufnsyslangcu
decreased if

.. a) first an imtegrator and then a -

(@

system.
b) an integrator is included in the
fi
c) adifferentiator is included ina
- - parallel path. -
. d) adifferentiator is included in the
— forward path. —
05. When the pole of 2-system is moved
towards the imaginary axis, then
a) settling time decreases.
b) settling time increases by 20 %.of_
initial value,
c) steady-state error isreduced 10
zero.
d) settling time of the system
increases.

e 7 <. - differentiatorisinchided in the

06. The damping factor of a second order
system whose response to unit step
‘input is having sustained oscillations is
a) =1 b) >1
) <1 d) =0

#

07. The transient rcspume-of asystem
with feedback when compared to that
without feedback —

a) decays slowly.

b) rises slowly.

¢) rises more quickly.
d) decays more quickly.

08.The settling time for the system

is.. .. seconds when the output
settlzs wubm +2 % for a unit siep
input.

2) 08 b) 12

c) 20 d) 1.6

09. The type of the system whose transfer
function is given by

(s+3) .,
Gis)=. +s +s°+3s°+2s °

s

@3 ®2 ©5 - @1 °
0. Physically the damping ratio represents
the .

a) energy available for transfer.

‘b) energy available for exchange.

¢) ratio of energy available for
exchange to that available for
transfer.

d) matio of energyost to lhe energy
available for exchange.

I1. The static acceleration constant of a
type 2 system is .
a) infinite b) zero

<) cannot befoundout  d) finite.
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(3)7 Parabolic input signal :

) = At?/2
RG) = A/s?

" 12. The fime domain specification which is Key for Objective Questions :

; dependent only on, the damping factor .
{ is 11012 ..o (d
' ¥ a) rise time b) peak time 8 : @

c) setting time ) peak overshoot.

i 3.2 Steady state Analysis ; :

: The steady state part of time response reveals the accuracy of a control system. Swndymte €= Lt s. R
l Yo "monsnbsefvedlflheactmluutpmdncsnolmcﬂymtchmmthempul. =0 1sa)
} ’ ——
(1) = r(t)=c(t) =Ls. Als =L _aA _ _A

UOoI+6 0 146 | 14K,

Steady state error, &= Lt e(t)
) . ==
where K, = lLt.1 G(s) = Position error constant

.- lLl-‘lf(ﬂ—U(l)]
_ - For ramp input .
Using final value theorem, R ' . .
&= Lt sEfs) ’ ‘ . es= Lt 5. _R@) -
S50 . 3 50 I+G(s)
- Cls) ' o= Lts A!sz“‘ '
- o . . o= Lt A _ _A
C(l) E{’)G(‘) = E(s) 66 . ] . ) 540 1+G(s) 50 3“+G(S)] K.
_C_@l.. "Rt ] ' — * where Ky= Lt 5 G(s) = Velocity emor constant
- G(s) 1+G(s) ) | -
i eg= Lt s. _R(s) : . . . L en= Lt s, _R(@)
| 0 Tr6m| . - 0 TrGE)
Theopm—loopﬁnsfa‘ﬁmcumﬁegpemdlmmcnumbuofwlsltthcmgmmdlbe ' = ,I'_‘,l,, ff_-A—“L" = ,l_'fo -2—4—_ = A
.. order indicates the total number of poles. The type of the iystem determines steady state .. . [} . ) IR A i | B ')
response and the order of the system determines transient response. ‘7— 8 T where Ke= Lt SJG(,) ::ﬂc‘ce]. i .
S0
test als nsed in Stead: te .
(1) Stepinputsignal: . (2) Ramp input signal: : | Tee 0 - ke 3
) . ’ = - . A
'—--TA_ ft) = Au(t) A r(l)‘ At N | swep — L 0 0 o
iy . - ;2 - 2 I\+]{1I L
__ ,R(S) Als L Rs) = Als . Ramp N NI 0 0
' ’ - i ' i | Parbolic] @ © | A/Ky 0

ki
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'01. The presence of non-linearities m a
. control system tends to introduce
a) transienterror b) instability
c) static error d) steady-state error

T (02. The static acceleration constant of a ‘

type 2 system is
a) infinite . .—b) zero
¢) cannot be found out  dy finite

03. The transfer function of the system .
which will have more steady state
ervor for step input is

80
® GBI s+2)(s+3)

120
s(s+1)(s+15)

60 .
©) 5705)(s+3)(s¥55) .

120
@ (s+1)(s+4)(s+15)

(b)

" (4. The presence or absence of steady-
state error for any given system
depends upon

a) presence or absence of pole at the e

infinity.
'b) presence or absence of poles and
Zeros
at the'origin, -
.c) absence or presence nfzerus at the
. ongin.
d) absence or presence of pole at the
05. When the gain ‘k” of a system is
increased, the steady-state error of
_the system
a} increases.
b) remamsu:dmgnd
c) may increase-or decrease.
d) decreases.

OBJECTIVE

— ) 1 —-

UESTIONS

06. The p!mmsrcprw:mcdbythc
transfer function.The system is given
- a degenerative feedback. The
effective of the feedback is to shift
the pole

a) positivelytos=(a+k)and
reduce the time constant to

Ca+(l/k)

"~ b) negativelytos= —(lx+k ) and
increase the time constdnt to
a+k.

(c) negativelytos= —~(a+k ) and
reduce the time constant to
a+(1/k).

(d) negativelytos= —(a+k)and _
decrease the time constant to =
[(1/(a+k)} ‘

07. [nasyst:mwnh input R(s)nnd ;
output C (s), the transfer functions of i
the plant and the feedback system is d
given by G (s) and H (s) ¢

respectively. The system has got a il
negative feedback. Then the error 1
~ signal is given by the expression :
__G@IR(s)
@ EO" T GEeHE

" O E@=.CEGE T

) E@)= 1+G(s)H(s)
R (s)

OEO"TIoehe
08. The static error constants depends on -
a) the order of the system
“b) thetype of the system
c) both type and order of the-system
d) None of the above -

g

I.d 2.d 3.d 4@ 5. d
6.d 7.d 8.b 9.d
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CHAPTER-4 | STABILITY

Coneept of stability:
Any system is called as a stable .sy.mem if the output of the system is bounded
for a bounded input. Any signal is called bounded if the max. and min. value are finite.

BI BO
—| System —

Eg:
] o N p inugoidal
< " u() 7/ etu(t)
. — _
0
-Bounded Unbumdad Unbounded - Bounded

. Stnhihtynfmysystundq:mdson]ymthelnm::mol'polcshmnnlonﬂ}c
location of zeros. :

. If the poles are located in left side of s — plane, then 1.he systcm is stable.

L If the roots are located on imaginary axis including the mgm (except repeated roots),
the system is stable.

If the poles are located in right halfof s — plane, then the system is unstable.

As pole’is approaches origin, stability decreases.

When roots are located on hhaginary axis, then the system is marginally stable.

- .

The poles which are close to the origin are called dominant poles.
The systems are classified as B -Absolutely stable systems
2) Unstable systems
3) Conditionally stable systems
- @ When vnﬂahkpammmisvmat&nmﬂtum.:fﬂ:cpnhmlmtadnn left side
- and it is alovays stable, then it is absolutely stable.
“ﬂmvnmblepammdai:mnedmduyﬂmwmhie for values 0 to =, at some
point onwards there is (are) polc[s) in right side then it is called conditionally stable.

. Ter.l:mqum used to calculate slablllt_',r are 1) Routh-Hurwitz criterion
= 2).. Root locus
3) Bodeplot

—_— __ 4) Nyquistplot .. .
- 5) Nicholas chart
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4.2 ROOT LOCUS TECHN_IS!UE
Itis the éraphiml representation of the roots of the characteristic equation, then the wriahli:t
parameter is varied from 0 to . + )

1) Root Locus ( RL) (K- Otow )

2) Complementary RL (K- 0torm )

3) Complete RL (K= - fow)

4) Root contour ( Multiple parameter variation )
_ Concept of Root locus : -

Itis not possible o plot the root locus if there is no variable parameter in characteristic equation.

Classification of stable systems: =~~~ e )

=" A
v

1) Undamped system (roots on imaginary axis i.c., real part = 0)
2) Under damped systerr  (imaginary but real part is negative)

3) Critically damped (roots are real and same) —-

4) Over damped system  (roots are real and different)
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Rules for the construction of Root locus :

Themollouﬂlulmyssﬁnnmmlmlhmpmnnﬂrmlms.

ﬂlemotlou.nsalwnysmns(l{-'ﬂ)fmmlheopm hoppolmmdlmnmm(ﬂ—w)
on either finite open - loopm'usormfuury ﬁmm&unmlkva!idnnlylf P=Z

The number of separate branches of the root Iomseqm.!smhume numba'ot'upm-
Iooppolﬁornumbetol’opm lmpmus\vhndwmguta

N=P,if P>Z -

_N=Z,if Z’>P_
AseclionufmolIu:u:Eonlh:mluisi[l@nmulnmnbaofnpm-buppulﬁmdm
10 the right of the section is odd.
Thevalucof‘K'umyponnmﬂiemollowsunbeulwht:dbyusngunmgmmde
criteria.

Product of poles magnitude {or length)

K=
Product of zeros magnitude (or length)

If P#Z, some of the branches terminate at “" o some of the branches wil start from ‘0",

If P>Z, (P -Z) ‘branches will terminate at =",
" If Z>P, (Z~P) branches will start from “w’.

- Whenever any branch will terminate at “eo” means that 2 zero is located at',

" =» Whenever any branch is start from ‘o’ means that a pole is located at ‘a”, *

* The angle of asymptotes :

p>Z, (P Z) branches will terminate at ‘=” a!ongsniglﬂ Imeuymplut:s“&mmgla
ares .

{2q+1) 180°
P-Z

I Z>P,@-P) branches will start from ‘e’ along straight ine asymplotes whose angles are

(2q9+1)180°
Z-P

* Angle of departure : } =

Centroid : The asymptotes meet the real axis at-centroid.
" Sum of real parts-of poles — Sum of real parts of zeros

P-Z

* Intersection points with imaginary axis : The value of ‘K’ and the point at which the
Root locus branch crosses the imaginary axis is determined by applying Routh criterion to
the characteristic equation.The roots at the intersection point are imaginary. s

* Break —away point and break — in point :

Break —away point is calculated when root locus lies between two poles.
Break — in point is calculated when root locis lies between two zeros.
dK

Break — away or break — in point is calculated by solving =0

ds

Procedure :

2) From the characteristic equation (C.E.) -

b) Rewrite the characteristic equation in the form of K = f(s)
¢dK/ds = 0

d) The root of dk /ds =0 gives the valid and invalid break point
c) The valid break point which must be on root locus branch

* Angle of arrival :
It is applied whcn there are complex zeros.

where § = zpoles— £ zetos

It is applied when there are complex poles.
$o = 180°—¢
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Complementary _I'gnmoclls H
In this the magnitude criteria remains same but angle criteria changes.

’

ie, £Zeros— £ Poles = even multiples of

(2q) 130°

1) Asymptotic angles =
’ P-Z

2). Angle of deparure = 180°—¢
where § = Apo!é- £ zeros

3) Angle of arrival = 180° +¢

4) A point on the real axis lies in the compl y RL, if the number of poles and
zeros to the right side of any point is a even number. .

Example: Sketch the complete root locus for the system having

K (s+5)

GE)HES) = —————
: (24 45+ 20)

Sol: Step: NumberofpolesP=2, Z=1, N=P-Z °

" One branch has to terminate at finite zero s =— 5 while P-Z =1 branch hasto
terminate at co,

Starting points of branches are, -2+ j 4.

Step 2 : Pole-zero plot of the system is shown below.

- " |
NRL NRL !
-5 -1 0
One breakaway -j4
" Point .
Step 3¢ Angle of esymptotes
o (2q+1) 180°
= —_— q=0
P-Z

Step 4 : Centroid.
As there is one branch approaching towand one asymptote exists, centroid is not required.

Step 5 : Breakaway point.
1 +G(s) H(s) = 0 )
4420+ K{s+5) =0
&K

=0 = -s(s+10)=0.
s

s=0 and s = ~10 are breakaway points. But s = 0 cannot be breakaway paml.
Hence s = -10'is valid breakaway point.

Step 6 : Intersection with imaginary axis,

Characteristic equation ,
S+as+20+K(s+5) =0
245 +4)+(20+5K) = 0
Routh’s Array can be formed as below :

s 1 20+5K
s' T K4 0
s 204K

* Kgar = —4 makes s row as row of zezos.

But as it is negative, there is na intersection of root locus with imaginary axis.

Sp7: Angleof departure, ' -
—= - T - —
el
< 3 X
-=5 ] 0
: dr1
e . <' =J4

HrEN, o b = '@ = 533

b AtIecTe-
L b = 1800-¢ = +143.03° at —2+j4 pole.

$a = 143130 at —2-]4 pole.
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r fa=+40.13°
4

N s

Step 9:

e .
e R [}

. Forall mngesof Kie, 0 <K <
So system is inherently stable. -

j4
4y
$g=-143.13°

Prediction of stability

Example : Sketch the eomplete root locus of system having

Sol.: Stepl:

Step2:

' Slept.:

Step 5

.. K
6@ HE) = —
s(s+1)(s+2)(s+3)
P=4,Z=0&N= 4 i, four branches in the root locus.

All four branches starts from open-loop poles and terminates at <.

(2q+ 1) 18¢0°

: Angle of asymptotes = = 45°, 135°, 225% 315°

L
o 0-1-2-3 |
Centroid = ——— =~135 !
4

Breakaway point
K=-s'-65=11¢~6s

dK
— =0 '=s=-15-0381,-2619
ds

Here, - 1.5 lics in the root locus and - 0.381, & 2,619 lies in the complementary
root locus.

. both the roots are always in left half of s-plane.

Step6: 1 jon of root locus imaginary axis.
Characteristic Equation s+ +1IF+65+K =10

st 1 1 . K
s 6 6 0
s 10 K 0 ’,
s' | (60-6K)/10 0
£ |- K . =
s 60-6K=0 " .\ Kue=+10
-Anxiliiryequallo.n:
108+K =0
AtK=10, s*=-1, 5 = &}
Step 7 Complete root locus.
' 0, =45
" El
“?, 135

. Step¥: Fw0<KI<_lD,synemisabsnlmlzmbIa AtK =10, system is marginally
stable oscillating with 1 rad/sec. For K > 10, system is unmb[e.‘
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“Complementary Root Locus - . i ‘.
Stepl: P=4,Z=0&N= 4 ie, fourbranchesintheroot focus.  + =~ __

Step2: All fumhmdﬂmﬁnmupmhlo‘npp:lesuﬂlnmi!;mmm.
2q) 1%0° '
Step 3 : Angle of asymptotes =
: T4

0-1-2-3 _ _ -
Step 4 : Centroid = ————— = 15
4

= n°; 9"“? 18¢°, 270°

Step 5 : Breakaway point o
K=-s'-65-118~6s

dK
— =0 = s=-15,-0381,-2.619
ds .

Here, - 1.5 lies ini the root locus and ~ 0.381, & 2.619 lies in the complementacy oot ocus.

RL of system with transportation lag :

20 — )
-7 7 LiOwpn] e

Transfer function = =
' L[Input] R(s)

Root Locus Plots for Typical Trensfer Functions :

) T+ DT+ DET+1)

Gls) . Root Locus
: AR -
K Rootlocus ~ ~ * )
L ——>0o
sTi+1 =
_ <
K
2, — % 3 o
T+ D) ETa+1) AW ol
jo

. K
3

U -1

=

]

K i ' . : -
4 = e
s =

¥ 3

=4
AN

-]

A e i, L

Krz

5-
$(sTh+1)

[

K
6, ————
sETI+HD)(ETa+)
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A Ajo
K(sTa+1), | \ .
7 ——O— % F——>
sSTy+ 1) (sTa+1) 1T -u'r._-lrn<
Ao~
K
ke ) < W—>
s =
K _
S(sT +1) S 1 | J
K(sT,+1)
0. ——— o
"sIT +1) . - “UTL -1ITa
. — Jo T
KGETa+1) : :
1, —— - 0 -
s’ 11T, ) _
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CHAPTER -5 FREQUENCY RESPONSE ANALYSIS
The various frequency response analysis techniques are ’

1) Bode plot o

2) Polar plot ) .

3) Nyquist plot g

4) M & Ncircles : . : s

5) Nicholas chart

1) Bodeplots: __
It is used to draw thefrequency response of a vy loop and closed-loop system.

The representation of the logarithm of | G(ja) | and phase angle of G(jo), both plotted against
frequency in logarithmic scale, These plots are called Bode plots.

-Bode Plot of first order system :
' !
Let the Transfer Function = N
1+Ts
subs. s =
| |
TF. =
‘ 1+jaT
l -
M= —— ;  ¢=-tan"'(oT)
'4[+(m'lj’
!
M = 20 log — =-10log[1+ (oT)*].
e’
wcl/T o<l/T 'Ln}r N
‘ HT <
© - _ ) ' \
- Ma=10logl . Mg = - 10 log (@T)?
=0 = -20log oT -204B /dec

Therefore, the error at the comer frequency @=1/Tis--
-10log2+Wlogl =-3dB

The eror at frequency (@ = 1/ 2T) one octave below the comer frequency is
-10log (1+%)+10log1 =—-1Db _
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Bode Piot of sccond order system :

w2

T.F, =

574200, 8+ 0,7
.subst. s=jw
m.l
TF. =

-0+ %o, 0+ o
Divide with ‘w,2”
I

(=i +j2gu
K i
M= -
(= + @)
M = = 1010g [ (1-p)? + 42 u? )
Casel) When <l > (@/ad<l = o<,

=-10logl = 0dB

[r=0lo,]

- ()

Case2) Wn B>l =(o/o)>] = m>-m,.
Ma=-10logp* = -40l0gp

Iff error between the actual magnitude and the as

below. = B —
For0 < p << theesor is ‘
. =100og [(1-p)*+44%u? )+ 1010g 1

and fnr[<p<::m,lheéwmris

=10log [(1 = )* + 447 ) + 40 logp

Bode Plots for Typical Transfer Functions :

ic dpproximation is as given

Bode Plot
6o
K- : | odBioct
1 M |
sTy+1 i
0db um log o
o ) -6dB/oat
K =
2 — ' B
T+ (ET+1) ’ o ee—— N
Wt \osm,
" =40 dBMec
K - : "I
3 : -20
T+ T+ DETHI) ; B
. 048 —
vt um \/n logw
60 dB/dec
K ‘ . o
4 — "\ ~6dB/oct
. R T N ¢
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M - 20dB / dec
K
5. |
sisTy+1) ] Taz] (]
- 40 dB/dec
K M =20dB /dec
6 ————— -40
sETI+D T+ 1) 0dB —{ )
T [[A+] °
- 6B / dec
M =20dB /dec
K(sT,+1)
7. 0dB —
sGTiI+D(sTa+ 1) VT VTe N\ 20 dB/dec
- 40 dB /dec

8.

K
)

KT+ 1)

9, ——
ot

[Cg @

K(sT,+1)

s!

2) Polar plot :
The sinusoidal transfer function G(je) is a complex function'and is given by
/G(jw) = Re {G(jo)] +] 1a [GGw) ]
G(io) = |G} | £Gie) = M Lé
from above equation, it is seen that G(joo) may be represented as a phasgtot'
mugmmdc M and ph:se angle §. As the Input ﬁ-aqumcy o is vaned from 0 to w, the magnitude
M and phase mglc # change and hmcc ‘the tip of the phasor G(jo) traces a locus in the wmp[ex
plane. The locus thus obtained is known as polar plot.

8

When a transfer function consists of “P* poles and *Z’ zeros,-and It doesn't consist poles

at otjgin then the polar plot starts from 0° with some magnitude and terminates at — 90° x (P - Z)

with zero magnitude.
When a transfer fimction consists of poles at origin, then the polar plot starts from
90 x no. of poles at origin w1th £ mgrmudeundends at- 90" x(P-2) wu:hm'o
mngmtuda

2) Nyquist Stability Criteria :

It is used to determire thesfaimlnyofc closed-loop :ymm using pola: plots. This
conc:pt 1s derived from complex analysis usmg *Principle of Argument’.

G+Z) (+Z)

Let G(s) = > ()
($+ P) [3+ P2) —

Characterist jc Equation , i, 1+ G(s) T

G+L)(s+D)

(s+P)(s+Py)

(5+P)(s+P)) + (s+Z)(s+Zy) .
= - g @
(s+P)(s+P3) )

1466 = 1+
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‘me(l) and (2), the open-loop poles and CE poles are same.

s+ 2/) s+ 2a')
CE = > (3) ;
(s+P)G+P)

GGs)- (s +Z) (54 2Z0)

——> 4

Overall ransfer function =
l+aﬂ ¢+m)@+ah

From(3) and (4), the C.| I:ms-and clowd-lonp poles are same. ’

—sFor the closed-loop system to be stable, fhe zeros of the C.E should notbelmadmﬂ:e right
half of the s-plane.

Using Principle of Argument
Q(s) =1+ G(s)

Consider a contour as shown which covers the entire
right half of the s-plane. If each and every point is along the
-boundary of the contour is substituted in C.E according to the principle of argument.

'l'hcno.ofcnclrclesmthmpaﬂiqnnpn,N Z P

where Z and P are the zeros and poles of the C.E Ir;bntod.inside the contour or located in right
half of the s-plane.

For the closed-loop system to be stable, Z =0,
=»For the open-loop system to be stable, P =0, then N=Z.
In N=Z-P Zbecnm:s'o‘nnlyll'N 0[q(s)eomourshwldn‘l=ncirclclhcaﬁgin]

If the open-loop system is suble, the closed- loop system will be stable only if:beN}quut
contour dor.sn t encircles origin. i

—)Forﬂ:eopm—loopsysmn to be unstable, P = 0.

dfthe opm—loop system is unstable, the closed—lnup syst:m will be stable only if the
Nyquist contour em:m:ics origin in clockwise :llrrmun The number of encirclements should be
equal ¢o the number of open-loop poles located mnqicihemtour .

ke AR Y b

Nyquist Plots for Typical Transfer Functions :

G(s)

K .

sTi+1

K

(sTi+1)(sTa+1)

K

T+ T+ DT+ 1)

K
4 —=
©s
KV -—
5. ; .
s(sTi+1) —'—"
o=0 _.-" i
a=0 -
K, (" ‘*
6 ——= -__- '= )
sETy+1)(sTa+ 1)- -1 ;.-".
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K(sT,+1)
7. —
s(sTy+1)(sT2+1)

K ! 8,

g — @=04 a==
s’ NS
KT+ 1) Sl

. S—— Sl

C ST+ Nl

. P (O
K e E
0. — I
s ‘“-"*. i
KGT.+1) R
n —— . i
= * Y ¥

4) M & N Circles .
Constant Magnitude Loci : M-Circies
M~ circles are used to determine the magnirude response of a closed-loop system
using open-loop transfer function.
It is applicable only for unity feedback system. The open-loop transfer function G ( j)
of a unity feedback control system is a complex quantity and can be expressed as
G(jo).1=x+jy
. C(jo)  G(jow)
Since = - e
R(jo)  1+G(jo)

x+jy

M=

I+x+]jy
S M= ——
T
. On squaring on both sides and simplifying following equation isobu.ined :
(a-MHx?-2MIx+(1-M?)y? = M?
ZMI MZ )

T
(1-M?) (1-M%)

or xl-
M? 3! .
Add [——-] to both sides, i .

2M? M 32 M!- M Y
s X2 X+ [— 1'*'!":= *[_—]
: (1-M%) 1-M3J a-m?y L1-MY°

' i Ml 2 M ._2
* [x R V ] +y:=[ -]
S 1-MiJ- 1-M?

For different values of M, above Eq. represents a family of circles with centre at
x=(M?/1-M?),y=0and radivsas(M?/1-M?).On a particular circle the value of M
(magnitude of closed-loop transfer function) is constant, therefore, these circles are called M-
circles. -

" The centres and radii of M-circles for different valuesof M are given in the following
table and M-circles are-drawn in the following figure.
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M centrex=M*/1-M%,y=0 Radiusr=M/1-M?
05 033, 0.67

10 .. @ ©
w12 327 %

1.6 -164° 1.03

20 ‘ -133 B 0.67

; M=l
M=Lé Y

ST W R ) > .
. x
ST
In G ( j@) plane the Nyquist plot is superimposed on M-circle and the points of
intersection that gives the magnitude of c (jm) R ( joo) t different values of ‘.

Constant Phase Angles Loci : N-circles:

N - circles are used 1o determine the phase response of a do:ed—!oop .:}mm u.n'ng open-
loop transfer function.

The phase angle of the :Insd-!nop transfer function of a unity feedback system is given
chlm

R(jo) l+x+xy
‘The phase angle is denoted by §, therefore,
¢ =tan~'(y/x)=tan~' [y /(1 +x)] -
or tan ¢ ='tan{m"iy'vxi_—un"[wu+x')1}!.
' tan [tan™'(y/x)) ~tan (tan""[y /(1 4+x)])
1+ tan [tan""(y/x)) . tan (1an~'[y/ (1 +x)1)
(y/x)-[y/(1+x)]
i+(yi;).[yl(ﬁ_::_)]
y-

-]
]

x14x+y?

-~
Substituting tan ¢ =N in above equation
Y

1
Add |—
4

1
+ —--—J on both sides

N =

4N

xl+x+y: o
xi+x+yl=(yIN) =10

(wenr ) s —

. [“—

2

N 4n?

) —][— o)

—:+_—]
4N?

For different values of N, 2bove equation represents a fumn]y of circles with centre ll x=-Y%,y

=1/2N and radius as

\/'L 4N

On a particular circle the value of Nor the value phase angle of the closed-loop transfer

function is constant , therefore, these circles are called N-circles.

b |N=tn r.enln'x=-‘£|,y=la'2N Radius R = I/4 + 1/AN?
—50° © . -0 05 .
-60° | -1.732° "~ 0289 0577
-50° -1.19 -042 0.656
=30° | -0577 0866 10
=10° | -0.176 -2.84 238 °

0° K] T S @

w100 o076 |- __ Zsd - - 288
+30°] 0577 0.866 1.0
+50°| 119 0.42 0.656
+60°| 1732 0.289 —_— 0577
+90°] « 0 0.5
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Cutoff frequency and Bandwidth :

" The closed- -loop frequency réspﬁmcuf:sjﬂmusﬁommﬂmfgumﬂu'

response falls by 3 dB from its low frequency value to a frequency value @ The frequency w,
is called cut

Off frequency and the frequency range 0 to e, is called the bandwidth of the syé_lt:m.-'lhe
resonant

Peak M, occurs at resonance frequency o,.

.M#

The bandwidth is defined as the frequency at which

N_‘:E“““d‘ gain of the frequency response plot reduces

0.707 ; i.e. 3 db of its low frequency value, 1]
Fur a secmd order system d
: 02 - - HeNDWADTH
M(s) = —— '
. s34 20t s + 2
The bandwidth of a second order syslcm hﬁﬁng nun-mu magnitud; at 0=0is given by

-

E_Bw oy (1267 + V4 ¢ 4;1+z )"“

R "

Thcr:sﬁmtﬁ‘qqumcyis {o, = mﬂl—?f;l

" The resonant magnitude is T
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GAIN IN AND PHASE MAR

Gain cross - over frequency:The frequency at which the magnitude equal to one or0 dB
Phase cross over frequency: The frequency at which the phase angle is equal to -180°.

Gain margin (In Linear)

GMH-—I——._
| GGo) H ) |

The gain margin is a factor by which the gain of a stable system is allowed to
increase before the system reaches instability.

"The gain margin in dB is
o1
G.M = 20 logje dB

| GGa) Hjoo) |

Procedure to calculate Gain margin :
1. Calculate Phase crossover frequency

a) by equating phase equation to 180° or
b) by equating imaginary part to zero i,
2. Calculate the maginitude at phase crossover frequency and is equal to *a’.
3. Gain margin is equal to 20 log (1 / a). . ) '
For stable systems as | G(jo.) H(j,) | < 1, the gain margin in dB is positive. .
For marginally stable systems as | G(o;) H(jooc) | = 1, the gain margin in dB is zero.

For unstable systems as | G(jo.) Hjo.) | > I; the gain margin in dB is negative an the
gain is to be reduced to make the system is stable.

Phase margin ; . = : . o .
The phase margin of a stable system is the amount of additional phase lag pequired to
bring the system to the point of instability.

The phase margin is given by P.M. = 180° + £ G(s) H(s)

Procedure for calculationof PM: - - -~ v I L
1. Calculate ‘o' by equating magnitude equation to*1', ==~
2. Calculate the phase at © = ag .
3. P.M. = 180°+ 2 G(s) H(s). —
4. P.M is positive, the system is stable. :

P.M is negative, the system is unstable. ——

P.M is zero, the systen) is marginally stable.
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